

Radiation Damage Comparison between Intensity Modulated Radiotherapy (IMRT) and Field-in-field (FIF) Technique In Breast Cancer Treatments

Huisi Ai¹ and Hualin Zhang²

 Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, 46202
Department of Radiation Oncology, Northwestern Memorial Hospital, Chicago, IL 60611

Introduction

- Radiotherapy in Breast Cancer Treatments
 - i. Whole breast radiotherapy (external beam): photon for whole breast, electron or photon for boost volume
 - ii. Partial breast radiotherapy (brachytherapy): interstitial or intracavity (APBI: Mammosite®, SAVI_{TM})
 - iii. Chestwall

IMRT vs. Field-in-Field

- Intensity Modulated Radiotherapy (IMRT)
- 1. IMRT is widely promoted as a treatment that minimizes the radiation to surrounding critical structures because of its customizing features (inverse planning).
- 2. IMRT utilizes numerous small radiation beams or beamlets with different weight to deliver non-uniform dose fluence to target volume
- Field-in-field Radiotherapy
- 1. Field-in-field normally includes at least four tangential external beams of radiation, two primary fields in opposite direction are delivered to cover the whole breast.
- 2. Two or more boost fields inside each primary field are given to generate more uniform dose to the tumor.

Equivalent Uniform Dose

- Traditionally, radiation damage was evaluated by setting a calculation point inside organs at risk (OARs).
- Dose of calculation point can't give comprehensive evaluation of damage to the whole structure.
- EUD is defined as the absorbed dose that, when homogeneously given to a tumor, yields the same mean surviving clonogen numbers as the given non-homogeneous irradiation.
- EUD is a concept based on the cell survival calculation of the whole structure, to evaluate damage from radiotherapies.
- Study Objective: to compare normal tissue complications between IMRT and Field-in-field techniques in whole breast radiotherapy. Average suvivial fraction (SF) and EUD for normal tissue cells were calculated and evaluated.

Material and Methods

- Patients: 16 patients treated with IMRT plan and 20 patients treated with Field-in-field plan
- Tumor volumes along with OARs were contoured by radiation oncologist, treatment plans were generated using Eclipse treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines.
- Eclipse calculated the dosage delivery of tumor volume and OARs. Dose spectrum of different structures can be exported from Dose Volume Histogram (DVH).

Cumulative DVH

Differential DVH

EUD Calculation

• Using linear quadratic model, SF of normal tissue cells after N fractions of treatments can be calculated by:

$$SF = e^{-\alpha \cdot D - \beta \cdot D^2/N}$$

α and β are radiobiological parameters that represent the radiobiological response of concerned cells to radiation. Three different normal tissue represents 30%, 50% and 70% SF for a 200 cGy open field were used.

Tissue Type	Alpha Value	Beta Value
Radiosensitive Normal Tissue (30% SF)	0.366	0.118
Moderately radiosensitive Normal Tissue (50% SF)	0.211	0.068
Radio-resistant Normal Tissue (70% SF)	0.108	0.035

• Average SF thoughout the whole OAR

$$\overline{SF} = \frac{\sum f_i \cdot SF_i}{\sum f_i}$$

• EUDs for three types of normal tissue of each OAR were calculated from average SF

$$\overline{SF} = e^{-\alpha \cdot EUD - \beta \cdot EUD^2/N}$$

Plan Quality

- Play quality were compared by calculating the conformity (CI) and homogeneity index (HI).
- Conformity Index:

$$CI = \frac{PTV_{PIV}^{2}}{PTV \times PIV}$$

- PTV_{PIV} is the PTV encompassed within the PIV, which is the volume covered by the prescription isodose surface.
- Homogeneity Index:

$$HI = \frac{D_5}{D_{95}}$$

 D₅ and D₉₅ are the minimum doses received by 5% and 95% of the PTV, HI is a indication of dose uniformity within the PTV.

Results

• Prescription Dose:

IMRT: 34.2 Gy-59.92 Gy (Avg. 49.4 Gy); Field in Field: 34.58 Gy-50.4 Gy (Avg. 45.2Gy)

Lung (treated side)	IMRT		FinF		Lung	IMRT		FinF	
	Abs Dose	Relative Dose	Abs Dose	Relative Dose	(Contralateral)	Abs Dose	Relative Dose	Abs Dose	Relative Dose
EUD1(sensitive)	7.53Gy	15.6%	2.75Gy	6.0%	EUD1(sensitive)	2.17Gy	4.4%	0.51Gy	1.0%
EUD2(moderate)	8.89Gy	18.4%	3.48Gy	7.5%	EUD2(moderate)	2.33Gy	4.7%	0.59Gy	1.2%
EUD3(resistant)	10.55Gy	21.8%	4.76Gy	10.3%	EUD3(resistant)	2.45Gy	5.0%	0.70Gy	1.4%

Breast (contralateral)	IMRT		FinF			IMRT		FinF	
	Abs Dose	Relative Dose	Abs Dose	Relative Dose	Cardiac	Abs Dose	Relative Dose	Abs Dose	Relative Dose
EUD1(sensitive)	0.85Gy	1.7%	0.17Gy	0.4%	EUD1(sensitive)	5.74Gy	12.2%	1.00Gy	2.2%
EUD2(moderate)	0.94Gy	1.9%	0.18Gy	0.4%	EUD2(moderate)	6.63Gy	14.1%	1.09Gy	2.4%
EUD3(resistant)	1.03Gy	2.1%	0.18Gy	0.4%	EUD3(resistant)	7.66Gy	16.2%	1.19Gy	2.7%

Spinal Cord	IMRT		FinF		Plan Quality	Mean ± STD		P-value
	Abs Relative		Abs	Relative		IMRT	FinF	
	Dose	Dose	Dose	Dose	Conformity Index	0.630 ± 0.141	0.565 ± 0.096	0.167
EUD1(sensitive)	2.80Gy	5.5%	0.24Gy	0.5%	(CI)			
EUD2(moderate)	3.29Gy	6.5%	0.25Gy	0.5%	Homogeneity Index	1.147 ± 0.041	1.129 ± 0.096	0.460
EUD3(resistant)	3.79Gy	7.5%	0.25Gy	0.5%	(HI)			

SCHOOL OF MEDICINE

Results

Summary

- EUDs of the lungs, heart, contralateral breast and spinal cord with both IMRT and FIF plans were calculated.
- The patients treated with IMRT plans were delivered higher normal tissue EUDs than those treated with FIF plans.
- For lung of treated side, IMRT delivered 15.6%, 18.4% and 21.8% of prescription dose to radiosensitive, moderately sensitive and resistant normal tissue, while FIF delivered 6.0%, 7.5% and 10.3% of prescription.
- For cardiac, IMRT vs. FIF: 12.2%, 14.1% and 16.2% vs. 2.2%, 2.4% and 2.7% for three kinds of tissue, respectively.
- IMRT plans have better average CI while worse average HI than FIF plans. But no significant differences are found.
- The results indicated that FIF had more effective normal tissue dose reduction while maintain the plan quality in whole breast radiotherapy.
- If the damage to critical organs is concerned, a simpler and more organ avoidant field-in-field technique should be considered.

